Part of the Oxford Instruments Group

Modular Spectroscopy Solutions for Metals, Alloys, Composites and Ceramics Science

Molecular and Atomic optical spectroscopies provide highly specific, non-invasive tools for the determination of the chemical/elemental, structural and/or optical properties of a wide range of engineered materials linked to particular properties.

Andor’s modular spectrographs, high sensitivity CCD, EMCCD, ICCD, InGaAs, sCMOS detectors allow Researchers to tackle analytical challenges from the nano- to the macro-scale, with high degree of accuracy and repeatability, using probing techniques involving primarily Raman, Laser-Induced Breakdown Spectroscopy (LIBS), Luminescence-Fluorescence or Absorbance-Transmittance-Reflectance spectroscopies.

Additionally, Andor provides spectroscopy solutions for Advanced Material Science (inc. semiconductors quantum sources).

Spectroscopy Solutions Adapted to Your Needs

Andor spectroscopy detectors provide the highest sensitivity from UV to SWIR regions, ensuring that information related to chemical signatures, structural changes or photonics properties can be obtained with the highest accuracy and highest reproducibility possible. Our highly configurable spectrographs provide platforms ideal for multimodal setups and a wide range of photon regimes and experiments e.g. micro-spectroscopy.

High Sensitivity & Dynamic Range

  • High sensitivity UV-SWIR
  • Large pixel well depths
  • High resolution matix
Request Pricing

ns to µs

  • Nanosecond gating
  • High sensitivity down to single photon
  • On-head DDG with ps accuracy
Request Pricing

µs to ms

  • Multi-kHz spectral rates
  • High sensitivity down to single photon
  • High resolution matrix
Request Pricing

Spectrograph Systems & Accessories

  • High modularity, high resolution and high throughput Kymera & Shamrock
  • Large simultaneous bandpass, high resolution Mechelle
Request Pricing

Key Spectroscopy Techniques


Laser-Induced Breakdown Spectroscopy (LIBS) provides information on the elemental/chemical composition of samples, through the analysis of the plasma emission resulting from the micro-ablation of the target by a pulsed laser. It can be used to grade metals, measure concentration or ratios of elements in different engineered materials, as well as identify impurities or trapped species in material matrix e.g. adsorbed species in fusion reactors/tokamaks plasma-facing walls.

Echelle spectrographs combined with fast gated ICCDs are particularly well suited to LIBS analysis, as they provide simultaneously high spectral resolution and very large spectral bandpass up to hundreds of nanometres.

Contact Applications Specialist


This non-invasive laser scattering-based spectroscopy technique provides molecular information (composition, structure) about the sample. It can be used to assess the effect of material matrix disruption due a variety of external factors e.g. temperature changes/shock, mechanical stress, or to identify and understand the impact of impurities, adsorbed molecules or defects on the material mechanical characteristics.

For materials containing organic species, Raman signal competes with fluorescence from the sample - a near-infrared laser or UV laser (with wavelength outside the absorption range of the molecule) can be used to greatly minimise or supress unwanted fluorescence contribution.

Contact Applications Specialist

Expand Your Research Capabilities

Learning Centre Resources


Author Title Year
Akatsu et al Prestress in alumina-strengthened porcelain as estimated with Raman scattering spectroscopy 2021
Jiang et al Enhanced breakdown strength and energy storage density of lead-free Bi0.5Na0.5TiO3-based ceramic by reducing the oxygen vacancy concentration 2021
Liu et al High-pressure Raman study of osmium and rhenium up to 200 GPa and pressure dependent elastic shear modulus C44 2021
Giannakaris et al Femtosecond Single-Pulse and Orthogonal Double-Pulse Laser-Induced Breakdown Spectroscopy (LIBS): Femtogram Mass Detection and Chemical Imaging with Micrometer Spatial Resolution 2021
Paris et al In-situ LIBS and NRA deuterium retention study in porous W-O and compact W coatings loaded by Magnum-PSI 2021
Roldán et al LIBS investigation of metals suitable for plasma-facing components: Characteristics and comparison of picosecond and nanosecond regimes 2021
Gaft et al Atomic and molecular emission of beryllium by LIBS 2021
Narlagiri et al Simultaneous quantification of Au and Ag composition from Au–Ag bi-metallic LIBS spectra combined with shallow neural network model for multi-output regression 2021
Atikukke et al Calibration-free laser-based spectroscopic study of Sn-based alloys 2021
Lednev et al Investigation of the feasibility of online laser-induced breakdown spectroscopy for elemental analysis of compositionally graded alloy parts during their fabrication 2021
Dai et al Quantitative determination of Al–Cu–Mg–Fe–Ni aluminium alloy using laser-induced breakdown spectroscopy combined with LASSO–LSSVM regression 2021
Singh et al Laser induced breakdown spectroscopic measurements of oxygen to metal (O/M) ratio in metal oxides samples 2021