Part of the Oxford Instruments Group

Dragonfly Confocal: 200+ Publications. Delivering Science with Impact.

Since its launch, more than 200 papers have been published in high profile journals using Dragonfly. Dragonfly is a unique spinning disk confocal system that revolutionised the way imaging systems are perceived.

Before Dragonfly, there was no instrument compatible with live-cell imaging that could deliver deep-tissue imaging, as well as single-molecule localisation microscopy.



Research that makes an Impact

At Andor it matters to us that the products we develop make a real difference to our customers and contribute significantly to their research.  We were born out of Queen’s University and have never forgotten our roots.  It excites us that the Dragonfly platform is being widely used in papers published in high-impact journals like Nature, Neuron, Journal of Cell Biology and more.

64% of Dragonfly papers are published in journals with an impact factor of > 5

Multidisciplinary Research

Dragonfly is much more than a high-speed confocal. TIRF, SRRF, and powerful laser-based widefield illumination can deliver super-resolved understanding of processes and place them in the context of whole tissues and organisms. Combined with Imaris, market leading 3D analysis software, our workflows address a broad range of disciplines with a single solution.

Disease Research

Clinical & Drug Studies

Technique Development

Membrane Dynamcs



Cell Division

Stem Cells


Centrosomes & Cilia

DNA Damage

Selected Publications

Title Journal
Expansion Sequencing: Spatially Precise In Situ Transcriptomics in Intact Biological Systems Science
Cellular extrusion bioprinting improves kidney Nature Materials
Development of a Cardiac Sarcomere Functional Genomics Platform to Enable Scalable Interrogation... Circulation
The nucleoskeleton protein IFFO1 immobilizes broken DNA and suppresses chromosome translocation... Nature Cell Biology
Long-Term Potentiation Requires a Rapid Burst of Dendritic Mitochondrial Fission during Induction Neuron
Melatonin promotes human oocyte maturation and early embryo development by enhancing... J Pineal Res.
Super-Resolution Three-Dimensional Imaging of Actin Filaments in Cultured Cells and the Brain via... ACS Nano
A jumbo phage that forms a nucleus-like structure evades CRISPR–Cas DNA targeting but is vulnerable... Nature Microbiology
Multiplexed 3D super-resolution imaging of whole cells using spinning disk confocal microscopy and... Nature Communications
Building sensory axons: Delivery and distribution of NaV1.7 channels and effects of inflammatory mediators Science Advances
MRE11 UFMylation promotes ATM activation Nucleic Acids Research
PDZD8 mediates a Rab7-dependent interaction of the ER with late endosomes and lysosomes PNAS
Matrix metalloproteinase (MMP)-degradable tissue engineered periosteum coordinates allograft healing... Biomaterials
SARS-CoV-2 triggers inflammatory responses and cell death through caspase-8 activation Signal Transduction and Targeted Therapy
Green-, Red-, and NIR-Emitting Polymer Dot Probes for Simultaneous Multicolor Cell Imaging with... Chemistry of Materials
INF2-mediated actin polymerization at the ER stimulates mitochondrial calcium uptake, inner membrane... Journal Cell Biology
A Contraction Stress Model of Hypertrophic Cardiomyopathy due to Sarcomere Mutations Stem Cell Reports
Glia Promote Synaptogenesis through an IQGAP PES-7 in C. elegans Cell Reports
Organoid Reproducibility and Conformation Journal of Controlled Release
Nephron progenitor commitment is a stochastic process influenced by cell migration elife

Recent Webinars


We presented actual membrane trafficking events captured using Andor’s Super-Resolution Radial Fluctuation (SRRF-Stream) implemented via the highly sensitive iXon camera. Andor´s imaging technology offered new insights on the role of PI3-kinase in clathrin-mediated pinocytosis. Understanding this fundamental mechanism of vesicle trafficking could have implications for many diseases.


Cytokinesis is the physical separation of two cells that occurs after the completion of mitosis. In this webinar, we will present how we used a combination of optical techniques such as subcellular optogenetics, FRAP, TIRF, confocal imaging (Dragonfly) and SRRF-stream imaging to uncover the membrane dynamics during the final steps of cytokinesis.


At the recent 3rd birthday celebration of the Andor Dragonfly confocal system, Dr. Peter March (Bioimaging Facility at The University of Manchester), Biology's answer to Professor Brian Cox, took us on a humorous journey through the life of a Senior Experimental Officer at a growing Bioimaging Facility, including a brief history of Microscopes from the 17th century!

Additional Resources

The Andor Learning Center hosts a wide range of tutorial videos, technical articles and webinars to guide you through the range of products for all your imaging needs. We have provided some links below which will get you started on some of our most recent uploads.

Dragonfly is an invaluable system for us and the busiest in our core facility. It’s been very helpful for our model organisms and organoid work, as well as being the first system in ESRIC which can do live super-resolution imaging.

Dr Ann Wheeler, Head of Advanced Imaging Resource, IGMM, Edinburgh

Dragonfly integrates speed of acquisition coupled with little or no photobleaching which has helped me immensely during my mitochondrial imaging. It is a wonderful system to perform both live and fixed cell imaging.

Rajarshi Chakrabarti, PhD, Research Associate at Geisel School of Medicine at Dartmouth