Part of the Oxford Instruments Group
Expand

Fast and Sensitive sCMOS Cameras

Andor’s Scientific CMOS (sCMOS) cameras series deliver an advanced set of performance features that render them ideal for high fidelity, quantitative scientific measurements. Providing a wide gamut of application advantages across the biological sciences, the multi-megapixel cameras offer a large field of view and high resolution, without compromising read noise, dynamic range or frame rate.

  • Sona sCMOS - Back-illuminated 95% QE & -45 °C cooled, up to 135 fps, 6.5 & 11 µm pixel size
  • ZL41 Cell sCMOS - up to 82% QE & 100 fps, 4.2/5.5 Megapixel - ultimate price/performance workhorse
  • Neo sCMOS - 5.5 Megapixel, 6.5 µm pixel, Vacuum cooled to -40 °C, Global & Rolling Shutter
Request Pricing Ask a Question

sCMOS for Life Science Applications

Developmental Biology

Imaging has been instrumental for following the entire lifespan of organisms to track fates of developing cells, tissues and organs. Whole-embryo and whole-body imaging of well-established model organisms including the zebrafish and C. elegans let us understand various interconnected functional networks that shed light on nerve impulse propagation in neural circuits or ventricular pacemakers in heart models.

Many experiments in this field will demand high performance sCMOS cameras to augment complex optical systems with seamless imaging. 

Andor sCMOS cameras provide solutions to the rapid frame rates and large fields of view that are inherent to study of developmental specimens using the Light Sheet Microscopy technique, also lending themselves equally well to rapid ion flux fluorescence measurements in embryo signalling.

Plasma Membrane

Analysis of phenomena associated with the plasma membrane is crucial for a large number of biological models involving cell adhesion, cell-to-cell communication, signal transduction as well as cell fate differentiation.

The plasma membrane can be imaged in many ways, some of which can involve direct membrane labelling with lipophilic or voltage sensitive dyes. Imaging of this busy and very delicate part of the cell is not a mean feat and requires highly sophisticated imaging solutions to unravel the cell membrane’s multi-fold functionality without damaging it in the process.

Rapid remodelling of the plasma membrane can be imaged with one of the sensitive Andor sCMOS cameras boasting from 2.0 to 4.2 megapixel resolution and up to 95% peak QE, perfectly suited to the low light conditions inherent to TIRF Microscopy.

Intracellular Trafficking

Without mechanisms to allow ongoing traffic of molecules, the cell’s finely tuned machinery would immediately grind to a halt. Therefore, fast and sensitive imaging is crucial for studies of endosome cycling, Golgi vesicles pathways, axonal transport, hormone release or synaptic vesicle pool replenishment.

Andor sCMOS cameras have for many years been the detector of choice for experiments involving imaging of cellular traffic. With their large FOV, resolution and speed, these cameras are ideal for tracking intricate events and dependencies occurring within the cell’s transport and communications networks.

Organoids

Three-dimensional (3D) organoids may be derived from live patient induced pluripotent stem cells to create a model system that can be used to test multiple hypotheses in a much simpler environment than a natural organ. 

For example, certain critical mutations known to initiate cancer development can be introduced by gene editing and trialled with regard to their overall impact in the carcinogenic pathway. Imaging of such gene edits within organoids can provide insight into the number of genetic mutations required for cancer development.

Using Andor sCMOS cameras, ideally complimented by the spinning disk confocal technique, you can achieve superb image quality of your organoid samples across 3D + time dimensions.

Gene Editing

Recent years have seen a gradual increase in the number of studies related to Crispr-CAS9 system where this novel and versatile tool has been used with great precision for DNA editing and a multitude of applications that can benefit from this. Depending on the type of sample and labels used, this type of imaging may require iXon EMCCD cameras with their unrivalled sensitivity for extremely low-light signals. 

However, for more brightly labelled Crispr-Cas9 constructs, the arrival of low noise, high QE Andor sCMOS cameras makes them ideal tools for fast and sensitive detection of light emitted by labelled DNA/RNA or related proteins involved in strand cleavage and modification of the existing genetic code.

Neurophysiology

Imaging of neural correlations has been well established from studies done in model organisms including C. elegans and Drosophila. Experiments performed in these animals and the combination of whole cell labelling and whole organism imaging yielded valuable insights linking certain molecular circuits to stereotypical behaviours of the whole animal.

By combining techniques of optogenetics, photo-stimulation and classical fluorescent labelling we have now gained access to cells and tissues previously rendered invisible. Fast and sensitive sCMOS cameras provide images of large groups of firing of neurons in rapidly moving animals, helping you decode the circuitry behind behaviours.

sCMOS Camera Solutions for Life Science

Andor offers a complete range of sCMOS cameras, spanning a wide envelop of performance attributes. Whether your life science or physical science application requires a large field of view, ultimate sCMOS sensitivity, high speed capability, high resolution or even a compact and light OEM design, you can be confident that we can guide you towards the optimal solution.    

Sona - Back-Illuminated sCMOS

Sona sCMOS

  • Ultimate Sensitivity for Microscopy: 95% QE & down to 1.0e- read noise
  • Capture large fields of cells at speed
  • Permanent vacuum technology for longevity and deep cooling
Specifications Request Pricing
Zyla 4.2 PLUS sCMOS

ZL41 Cell sCMOS

  • New ZL41 cell series specifically for life science applications
  • Up to 82% QE and 100 fps
  • Exceptional imaging flexibility, value and compatibility
Specifications Request Pricing
Neo 5.5 sCMOS

Neo 5.5 sCMOS

  • Deep Cooled, 5.5 Megapixel Solution: 64% QE & -40°C cooled
  • Global and Rolling shutter modes
  • Suitable for Life and Physical Science applications
Specifications Request Pricing

sCMOS Camera Model Comparison 

Ultimate sCMOS Field of View

The Sona-11 (32 mm) back-illuminated cameras utilize a unique technology approach to usefully access the entire 2048 x 2048 array, offering an impressive 32 mm sensor diagonal.

Sona sCMOS with 2048 x 2048 full array
Competitor back-illuminated sCMOS with restricted 1608 x 1608 array

Microscopy Field of View Advantage: Sona-11 (32 mm) with 2048 x 2048 array has the largest sensor on the market at 32 mm!

Ultimate sCMOS Sensitivity

Capture the weakest signals with the latest back-illuminated sCMOS sensors with up to 95% QE. Reduce exposures and illumination intensity. Reduce phototoxicity. Extend observations. Preserve cell physiology.

Signal to Noise

Comparative Signal to Noise under low light conditions (10 incident photons per 100 µm2 sensor area) - Under identical low light optical conditions, the Sona-11 with back-illumination and large pixel size is well suited to maximizing photon capture and Signal to Noise.

Never Miss a Detail with Extended Dynamic Range​

Andor sCMOS cameras offer our extended dynamic range functionality, supported by 16-bit range. Harnessing an innovative “dual amplifier” sensor architecture, we can access the maximum pixel well depth AND the lowest noise simultaneously. The result? Quantify extremely weak and bright signal regions in one snap.

Model Well Depth (e-) Dynamic Range
Sona-11 (32 mm) and Sona-11 (22 mm) 85,000 53,000:1
Sona-6 42,000 26,250:1
ZL41 Cell 4.2 30,000 33,000:1
ZL41 Cell 5.5 30,000 33,000:1
Neo 5.5 30,000 33,000:1

Furthermore, to achieve best in class quantification accuracy, Andor have implemented enhanced on-head intelligence to deliver market-leading linearity of > 99.8%.

sCMOS Solutions for High Speed Imaging

sCMOS technology is based on highly parallel pixel readouts making it possible to combine high frame rates and high resolution, while maintaining very low noise.

ZL41 Cell and Sona cameras offer fast imaging via USB 3 connections to capture the fastest processes. Need even more speed?

  • The newly enhanced Sona-6 runs at up to 135 fps via coaXPress.
  • ZL41 Cell: image up to 100 fps via Camera Link interface.
  • Push even higher speeds using regions of interest.