

Scintillators for Andor high energy detection cameras

Scintillator recommendations for Andor indirect detection detector platforms

iKon-L HF CCD

Best Resolution			Best Throughput		
Scintillator characteristics	Spatial resolution*	Energy range	Scintillator characteristics	Spatial resolution	Energy Range
YAG:Ce 40 µm thick on 3 mm FOP SCT-YAGCE-45-040-00	> 15 lp/mm	Best suited for broad 2 - 100 keV range	Csl:Tl 150 µm thick	~ 10 lp/mm	Best suited for broad 10 - 100 keV range
LuAG:Ce 40 µm thick on 3 mm FOP SCT-LUAGCE-45-040-00	> 15 lp/mm	Best suited for 10 -100 keV range	on 3 mm FOP SCT-CSITLT-50-150-00		

*Spatial resolution is given at 10% MTF for the entire system iKon-L HF, 1:1 fibre-optic plate and scintillator at 40 keV. Please note that spatial resolution will decrease at lower energies.

Zyla HF sCMOS

Best resolution		Best resolution/throughput balance			Best throughput			
Scintillator characteristics	Spatial resolution *	Energy range	Scintillator	Spatial resolution *	Energy range	Scintillator characteristics	Spatial resolution *	Energy range
YAG:Ce 20 μm thick on 3 mm FOP SCT-YAGCE -25-020-00	>30 lp/mm	Best suited for broad 2-100 keV range	YAG:Ce 70 μm thick on 3 mm FOP SCT-YAGCE -25-070-00	~ 20 lp/mm	Best suited for broad 2-100 keV range	CsI:TI 150 µm thick on 3 mm FOP SCT-CSITLT -50-150-00	~10 lp/mm	Best suited for 10-100 keV range
LuAG:Ce 20 µm thick on 3 mm FOP SCT-LUAGCE -25-020-00	>30 lp/mm	Best suited for 10-100 keV range	LuAG:Ce 70 μm thick on 3 mm FOP SCT-LUAGCE -25-070-00	~ 20 lp/mm	Best suited for 10-100 keV range			

*Spatial resolution is given at 10% MTF for the entire system Zyla HF, 1:1 fibre-optic plate and scintillator at 40 keV. Please note that spatial resolution will decrease at lower energies.

Absorption and Light yield characteristics of inorganic scintillators of interest

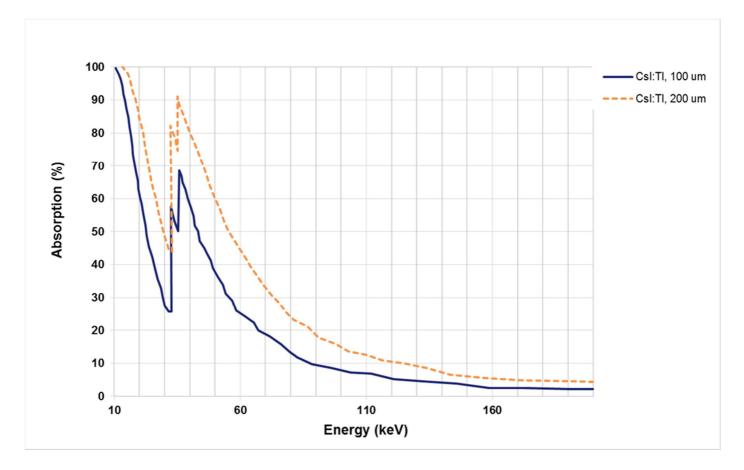


Figure 1 – CsI:TI absorption characteristics versus incoming x-ray photon energy and material thickness (source Hamamatsu)

Note: most of the x-ray photons below 8 keV will be absorbed by the protection layer before reaching CsI layer.

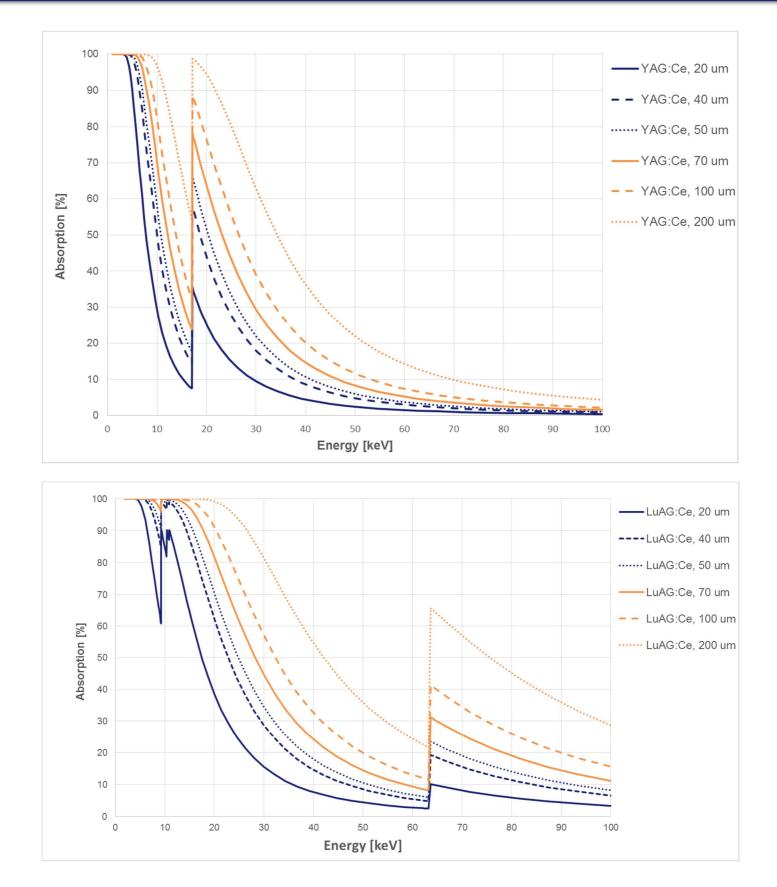


Figure 2 – Absorption characteristics of YAG:Ce (top) and LuAG:Ce (bottom) vs incoming x-ray photon energy and material thickness (courtesy of Crytur)

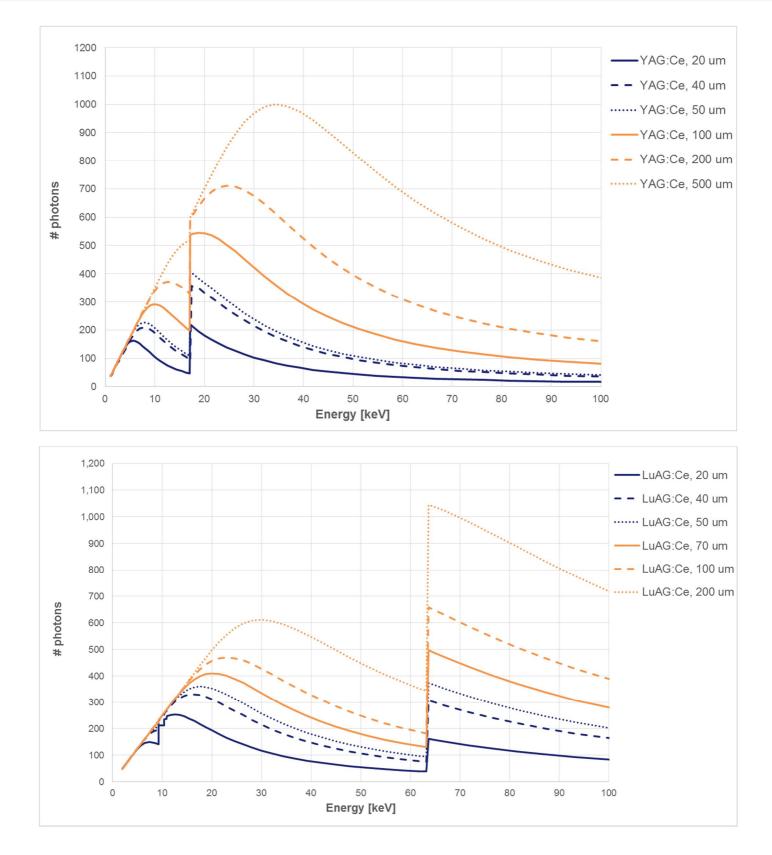


Figure 3 – Photon yield characteristics of YAG:Ce (top) and LuAG:Ce (bottom) vs incoming x-ray photon energy and material thickness (courtesy of Crytur)

Spectral matching

The scintillator emission wavelength should be matched to the sensitivity of the detector. Quantum efficiency of typical CCD and sCMOS sensors are shown on Fig. 4 alongside the peak emission wavelength of scintillators of interest.

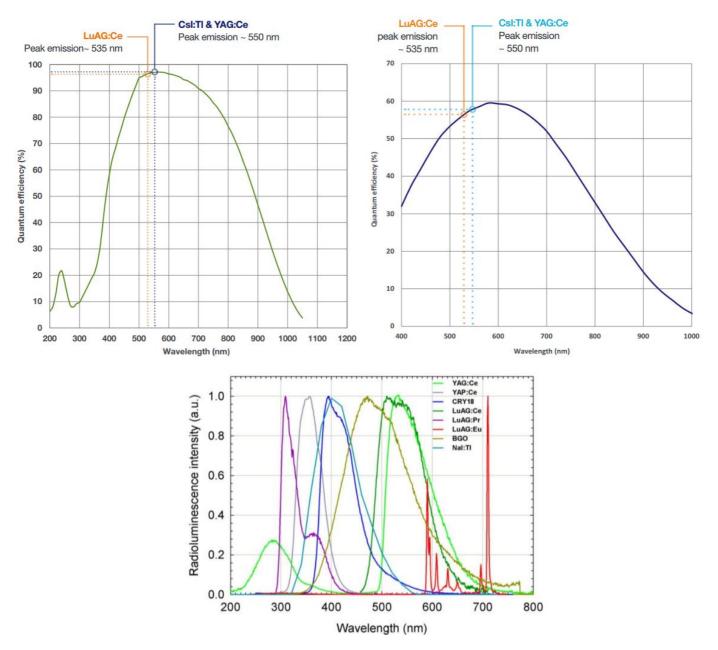


Figure 4 – Back-illuminated CCD (top left) and front-illuminated sCMOS (top right) typical Quantum Efficiency curves overlapped with peak emission wavelength of relevant x-ray scintillators. Bottom figure shows full spectral response of various scintillators including YAG:Ce & YAG:Ce types (courtesy of Crytur)

Spatial resolution and throughput

A single scintillator does not typically simultaneously achieve high spatial resolution and high light throughput. Compromise on the scintillators properties (e.g. thickness) have to be made to favour one aspect over the other or achieve the best balance between the two. The figure below shows an example of a high spatial resolution image obtained with a Zyla-HF sCMOS coupled to a high resolution 20 µm YAG:Ce scintillator and a high throughput 150 µm CsI:TI scintillator. To achieve similar intensity with the two configurations, the exposure time for the high resolution scintillator had to be 100 times higher than for the high throughput option.

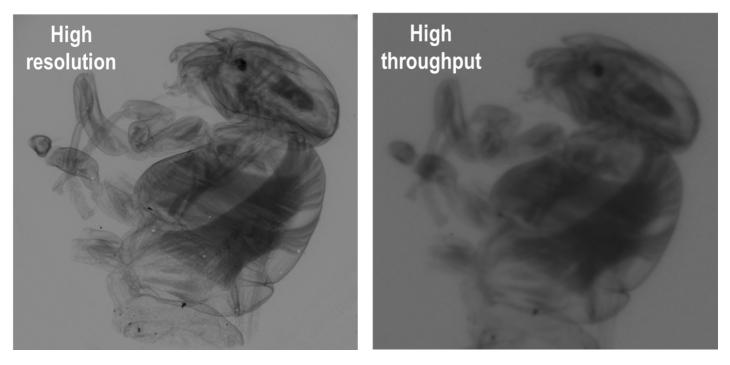


Figure 5 – X-Ray image of a wasp taken with a 40 kV X-ray source, courtesy of Crytur. Left: Zyla-HF fibre-coupled to a 20 µm YAG:Ce scintillator, 10s exposure time. Right: Zyla-HF fibre-coupled to a 150 µm CsI:TI scintillator, 0.1s exposure time.

Andor 'Fibre-optic' 'HF' camera platforms

iKon-L HF CCD platform

Zyla HF sCMOS platform

Detectors for	iKon-L	Zyla-HF			
imaging	DF936N-FB	ZYLA5.5X-FO	ZYLA5.5B-FO		
Sensor technology CCD		Scientific sCMOS (sCMOS)			
2048 x 2048 matrix Sensor format 13.5 µm pixels e2v CCD 42-40		2560 x 2160 matrix 6.5 μm pixels			
Sensor size	27.6 x 27.6 mm	16.6 x 14.0 mm			
Sensor options	Sensor options Back-illuminated, front-illuminated		Front-illuminated		
Minimum TE-cooling temperature	-35 °C	0°C			
Maximum full frame rate	0.95 fps	100 fps	40 fps		
Pixel well depth	100,000 e ⁻	30,000 e-			
Output node capacity well depth		n/a			
Readout noise	4.9 e ⁻ @ 50 kHz	2.4 e [Global shutter]			
Data range	ta range 16-bit		12 and 16-bit		
PC interface USB 2.0		Camera-Link 10-tap	USB 3.0		

Table 1 – Andor 'fibre-optic coupled' cameras key specifications

Andor 'Fibre-optic' 'HF' cameras accessories

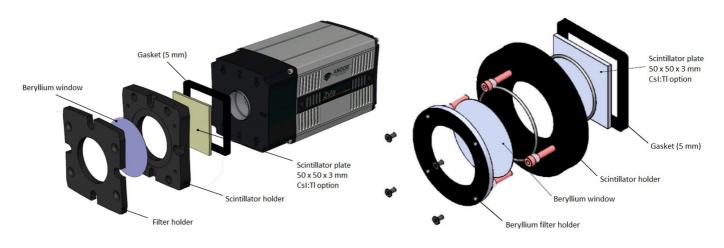


Figure 6 – Zyla-HF (left) and iKon-L HF (right) filter and scintillator holders configuration with a 50 x 50 x 3 mm CsI:TI scintillator; configuration is slightly different to accommodate the circular YAG:Ce and LuAG:Ce scintillators

Camera platform	Scintillator and filter holder	Standard scintillators compatibility	Standard filter compatibility
Zyla-HF	SCT-FLT_HLD-C025ZYL Ø25.4 x 3 mm scintillator Ø45.5 mm filter	SCT-LUAGCE-25-0xx-00 SCT-LUAGCE-25-0xx-AL SCT-YAGCE-25-0xx-00 SCT-YAGCE-25-0xx-AL	ACC-OPT-02839 Ø45.5 mm Be filter, 250 μm thick
	SCT-FLT_HLD-H050ZYL 50 x 50 x 3 mm scintillator Ø45.5 mm filter	SCT-CSITLT-50-150-00 SCT-CSITLR-50-150-00	[minimum recommended thickness: 200 µm]*
iKon-L	SCT-FLT_HLD-C045IKL Ø45 x 3 mm scintillator Ø60 mm filter	SCT-LUAGCE-45-0xx-00 SCT-LUAGCE-45-0xx-AL SCT-YAGCE-45-0xx-00 SCT-YAGCE-45-0xx-AL	ACC-OPT-03838 Ø60 mm Be filter, 250 µm thick
	SCT-FLT_HLD-H050IKL 50 x 50 x 3 mm scintillator Ø60 mm filter	SCT-CSITLT-50-150-00 SCT-CSITLR-50-150-00	[minimum recommended thickness: 200 µm]*

Table 2 – Standard scintillator and filter holders for Andor fibre-optic 'HF' platforms (*xxx* denotes the scintillator thickness)

* available through CSR – thinner windows carry increased risks of breakage, long-term stress

Q&A

What information should be provided for custom scintillator?

Parameter	Value	Notes
Camera platform		e.g. Zyla-HF, iKon-L HF
Radiation type		e.g. x-ray photons, electrons, neutrons
Energy range of interest	keV - keV	e.g. 0.1 keV to 50 keV
Importance of detector spatial resolution		e.g. high, medium or low importance, or ideally provide target resolution in lp/mm or μm
Importance of photon yield (from scintillator)		e.g. high, medium or low importance
Grounding		Should be considered when electric charges could build up on the scintillator, e.g. electron signal detection in TEMs
Low energy radiation filtering		Yes/No, cut-off energy (keV), fixed/removable filter – certain types of scintillators can be manufactured with a filter (e.g. Al) directly bonded to the device surface